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A method is presented for predicting 
the total response, in both frequency 
and time, of an unknown linear system 
when only the measured continuous 
wave (cw) magnitude is available. The 
approach is based on approximating the 
square of the measured magnitude by a 
rational function, from which various 
system transfer functions in terms of 
complex frequency are deduced. These 
transfer functions may or may not be at 
minimum phase. The corresponding 
impulse response is then obtained by 
taking the inverse Laplace transform of 
the transfer function. The impulse 
response of the minimum-phase case 
rises faster initially to its first maximum 
than the nonminimum-phase counter- 

parts. This result confirms that, for the 
same cw magnitude response, the accu- 
mulative energy contained in the 
impulse response is the greatest when 
the transfer function is at minimum 
phase. Physical meaning of the energy 
content is also discussed. 
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1.   Introduction 

The total response in frequency and time of a 
system to an assumed excitation, whether it is 
continuous wave (cw) or pulsed, is usually unpre- 
dictable if the system involves nonlinear elements. 
Even for linear but complex systems, the task of 
obtaining the total response when the system is 
excited by a source is still formidable because the 
complete system transfer function (amplitude and 
phase) may be unknown. The transfer function is 
defined as the ratio of system output to input in the 
frequency domain. The output and input can be 
voltage, current, electric field, magnetic field, or 
combinations of them. The time response of such a 
system required for assessing its vulnerability to an 
unfriendly electromagnetic environment can be 

determined only by sophisticated time-domain 
measurements or by derivations from the 
frequency-domain amplitude and phase measure- 
ments. Unfortunately, such time-domain measure- 
ments or frequency-domain phase measurements 
require expensive equipment and special consider- 
ations on radiation hazards, regulatory compliance, 
and environmental pollution (if performed out- 
doors). On the other hand, measuring magnitude 
response data of an unknown, complex, linear 
system to cw excitations at low levels, indoors or 
outdoors, is relatively straightforward, less costly, 
and free from compliance and pollution problems. 
Further, if such measured cw magnitude data can 
be processed to deduce a system transfer function, 
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the phase characteristics and time response of such 
a system to a general excitation are then derivable. 

In this paper, we present a method to deduce the 
total response of an unknown, complex, linear 
system from a given set of cw magnitude responses 
only. This is accomplished by approximating the 
square of the measured magnitude curve by a sum 
of ratios of two polynomials with real coefficients. 
Each of these ratios represents a second-order 
rational transfer function for a system with time- 
invariant lumped-constant elements. The exact 
number in the sum is determined by the number of 
resonant frequencies displayed in the measured 
magnitude data. Once the approximation work is 
done, the associated system transfer functions can 
then be obtained by using knowledge available from 
classical network theory. The transfer functions so 
obtained may or may not be at minimum phase. The 
corresponding phase characteristics and impulse 
responses are determined in a straightforward man- 
ner. For the same cw magnitude response, the accu- 
mulative energy associated with the impulse re- 
sponse corresponding to a minimum-phase transfer 
function is always greater than that corresponding 
to nonminimum-phase transfer functions. The deri- 
vations and detailed analysis are presented in Sec. 4. 

The theoretical relationship between amplitude 
and phase of a system with a minimum-phase trans- 
fer function is outlined in Sec. 2. The conventional 
numerical approach for determining the phase 
characteristics and the corresponding time response 
of the linear minimum-phase system from the 
measured cw magnitude data, and the accuracy 
involved in this process are reviewed in Sec. 3. 
Examples are given in Sees. 4 and 5 to demonstrate 
the usefulness of the proposed method developed 
in Sec. 4. Energy contents associated with the given 
system are discussed in Sec. 6. 

2.   Theoretical Background 

A stable linear system, however simple or com- 
plex, can be characterized by its transfer function 
H(s), which has no poles in the right half of the 
complex frequency s-plane. That is, H(s) is analytic 
in Re(s)^0, where Re stands for the "real part of 
[1]. We address only stable systems in this paper, 
because otherwise the system is not well designed, 
and therefore is not useful in application. In addi- 
tion, when the system is made of only time-invariant 
and lumped-constant elements, its transfer function 
is then a rational function ofs (a ratio of two poly- 
nomials with real coefficients) with the degree of 
the numerator polynomial lower than the degree of 

the denominator polynomial. When this transfer 
function is evaluated at s=j(o, H(jo}) is then a 
complex function of co, consisting of a real part 
R(o)) and an imaginary part A'(a)), or a magnitude 
\H{jci))\ and a phase 0(<u). That is, 

H(jco)=R((o)+j Xi<o) = \HiJ<o)\ e-^'M      (1) 

where the convention of assigning a minus sign to 
the phase function is used. The magnitude function 
\H(J(o)\ may also be expressed in terms of the 
attenuation function a((y): 

\H(jco)\=& _   p- a(ai) ln\HUo>)\= -a(o>).   (2) 

When H(s) is analytic as defined above and the 
system under study is causal [h{t) = 0 when t^O], 
as is usually the case in practice, the real and imag- 
inary parts of H(j(o) are related by the Hilbert 
transform pair [2], 

R(co)=l\   lyX{y)Kco'-y')]dy. (3a) 
~ Jo 

and 

^(^)=-^f my)K'^'-y')]dy.      (3b) 

In other words, the real and imaginary parts of this 
system are not independent. When one part is 
given either analytically or through measurement, 
the other part can be uniquely determined by 
performing one of integrals shown in Eq. (3). The 
complex transfer function //(;<u) is then com- 
pletely obtained, from which the impulse response 
may be derived. In reality, however, Eq. (3) is not 
useful because we cannot just measure the real or 
imaginary part of the system response to a given 
excitation. 

If His), in addition to being analytic and causal, 
also has no zeros in the right half of the s-plane, 
the transfer function is said to be at minimum 
phase, herein denoted by Hm(s). Under this condi- 
tion, the attenuation function ar(<u) and phase 
function 0(o}) are related by another Hilbert 
transform pair [2, 3,4], 

d(<o)=^l     [a{y)/{y'-co')]dy 

= -f/_[ln|//.(;»|/(j'^-a,^)]dy, (4a) 
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and 

a(co) = aiO)-^ j_je(y)/y(y'-<o')]dy. (4b) 

From Eq. (4b), we see that the attenuation func- 
tion can be determined completely from a given 
phase function only when a(0) is also known. But, 
for our application, only Eq. (4a) is required 
because we assume that the magnitude (or attenua- 
tion) function is given by measurement. Once 0(co) 
is determined from Eq. (4a), the entire complex 
Hm(j(o) can be obtained from Eq. (1) because 
|i/mOw)l or "(<") is already given. The impulse 
response of this minimum-phase system for t^O is 
then calculated by the inverse Fourier transform. 

"(')=^ f. HmUto) c'"" dt. (5) 

The system's time response to a general excitation 
can be computed by the convolution integral 
hm(t)*e(t), where e(t) represents an excitation, cw 
or pulse, applied to the system input. The success 
of determining the time response from magnitude 
data is based on the assumption that the system's 
transfer function is at minimum phase. The solu- 
tion of impulse response so obtained constitutes 
the only solution. 

In general, however, there may be multiple solu- 
tions, because other possible transfer functions 
with nonminimum phases giving the same magni- 
tude response may exist. One way of obtaining 
them with our proposed method is to be shown in 
Sec. 4. 

3.   Conventional Approach 

Since the improper integral in Eq. (4a) is not 
easy to compute, the conventional approach has 
been to apply a transformation of variables known 
as the Wiener-Lee transform to a(w) or \H(jci))\ to 
obtain the necessary 6((o). When the Wiener-Lee 
transform [2] 

<w = - tan(5/2) (6) 

is applied, the integration interval (- <», ») for w 
in Eq. (4a) is transformed into (-VJTT) for 8. The 
original attenuation function a((o) and phase 
function fl(<u) will be denoted, after trans- 
formation, respectively as A (5) and T(S). Since 

a(a))=- \n\H(jo>)\= - ^ln[R\(o)+X\(o)] 

even function of (o and 0{(o) = - tan~\X((o)/R(w)] 
is an odd function of <u, their respective transforms 
A (5) and T(d) will be even and odd functions of 5. 
As such, they may be expanded into Fourier cosine 
and sine series, 

^(5)=flo+fliCOs5+a2COs25 + ...+fl„cos«S+... , 

and (7) 

T(S)=bismS+b2sin28 + ...+b„sinnS+... , 

where the expansion coefficients are determined by 

flo = ^[   A(S)dS=^ j A(S)dS, 

(8a) 

a„=-\   A(8)cosnSdS = - J A(8)cosnSdS , 

and 

6„=M   r(5)sinn5d5=^ J r(5)sinn5d5. 

(8b) 

When the system under consideration is causal, the 
expansion coefficients in Eq. (8) are simply related 
by [2] 

b„- -a„ (9) 

is an 

Thus, when a(a)) or \H(ja))\ is given, A(S) is 
known. Determination of a„ from Eq. (8a) auto- 
matically yields b„ from Eq. (9), which in turn gives 
T(S) and 6(a>) by means of Eq. (6), and hence the 
complex transfer function H(J(o). The impulse 
response is then obtained from Eq. (5). 

The justification for using the Wiener-Lee trans- 
form and the procedures as outlined above seem 
straightforward. The transform succeeds in con- 
verting the original improper integral in Eq. (4a) to 
a proper integral in Eq. (8a). From the application 
point of view, the important question is then: if the 
integral in Eq. (4a) is difficult to compute before 
the Wiener-Lee transform is applied, is it easier to 
compute a„ in Eq. (8a) after the Wiener-Lee trans- 
form is used? The answer is most likely negative, 
because the integrand in Eq. (8a) involves compli- 
cated transcendental functions. This explains why, 
in practice, numerical computations are required. 
The entire procedure will then involve: (i) conver- 
sion of the measured data of a(w) or \H(ja))\ into 
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A (5) by Eq, (6), (ii) numerical calculation of «« 
from ^(5) by Eq. (8a), (iii) construction of a trans- 
formed phase function T(S) by including only a 
finite number of terms in the Fourier sine series 
with b„ = -a„, (iv) conversion of T(S) back to 
6(a}), (v) determination of the complex transfer 
function H(jo>) based on the given a{(o) and the 
newly constructed 6((i)), and (vi) numerical compu- 
tation of h(t) by Eq. (5). The numerical solution so 
obtained constitutes the only answer. Other possi- 
ble solutions with nonminimum phases can never 
be found. In addition, each of the above six steps is 
an approximation, thus exerting doubt about the 
accuracy in the final solution [5, 6]. 

Thus, while the Hilbert transform is useful for 
processing measured cw data directly [7], it may 
not always offer advantage, together with the 
Wiener-Lee transform, for deriving the minimum 
phase. 

4.   Alternative but Simpler Approach 

Using passive network theory [8, 9], we can 
deduce a rational transfer function H(s) directly 
and exactly from a squared magnitude function 
\H(ja})\^ expressed as a ratio of two polynomials of 
even order in o>, where the order of the numerator 
polynomial is at least two degrees lower than that of 
the denominator polynomial. Thus, if an approxi- 
mate squared magnitude function |//(;<a)|^ in such 
a form can be obtained from the measured cw 
magnitude data of an unknown, complex, linear 
system to some excitation, the task of deducing a 
rational transfer function, and subsequently, the 
associated phase function and impulse response (in 
time) is then straightforward. We will show later 
that multiple solutions for systems with the same 
\H(j(o)\ are possible. The transfer functions so 
deduced may or may not be at minimum phase. In 
this process, we essentially have assumed that the 
original unknown linear system, which may consist 
of distributed elements and other complexities, can 
be approximated by an equivalent passive network 
system with only time-invariant and lumped- 
constant elements. The approximation is the only 
one involved in the process. The exact order in the 
final approximate \H(J(o)\^ depends on outstanding 
features in the given cw magnitude data. The most 
important feature displaying a strong resonance at 
a particular frequency can be approximated by a 
simple second-order transfer function. 

4.1   Second-Order Transfer Function 

The second-order transfer function may take 
either of the following two forms: 

H^=A/(s^+as+b), (10a) 
or 

H^(s)=A(s+c)/(s^+as+b), (10b) 

where the parameters^4, a,b, and c are all real. In 
addition, we require 

0<fl<2V^, (11) 

so that the complex poles are in the left half of the 
j-plane. On the other hand, the parameter c in Eq. 
(10b) may be positive, negative, or 0. When c is 
positive, the zero of the transfer function is also in 
the left half-plane (in fact, on the negative real 
axis). In this case, the transfer function is at mini- 
mum phase. When c is negative, the zero is in the 
right half-plane, and the transfer function is at 
nonminimum phase. When c = 0, the zero is at the 
origin, also constituting a nonminimum-phase case, 
and the dc magnitude response at w = 0 is 0. The 
parameter A is used to match the given maximum 
magnitude response at the resonant frequency. 

The outstanding features associated with the 
second-order transfer functions in Eq. (10) are 
examined in the following analysis. 

4.1.1 Second-Order Transfer Function in the 
Form of Eq. (10a)   In this case, we have 

H2a (» =A/(b- (ip- +j(oa ). 

The squared magnitude is given by 

(12a) 

\H^ (jof=H^ (j(o)H^ ( -j(o) =H^ is)H2a (s) \s-ja 

ib-(oy+aW     (o*-(2b-a^)(o^ + b^ 
(12b) 

where cj is the only variable. 
Setting the derivative of this squared magnitude 

to 0 yields <u = 0 and (o^=(2b -a^)/2. lfb>aV2, 
a) = 0 gives the location of the minimum, while 
(i}^=(2b -a^)/2 gives the location of the maximum 
representing the location of the resonant frequency, 
herein designated as 

(o§=(2b-ay2>0. (13) 
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On the other hand, if aV4<6 <aV2, |i/(0)p will 
be the maximum. In this case, there is no 
resonant frequency. Thus, if a given magnitude 
curve has a resonant frequency at coo (other than 
0), we require 

b>aV2, (14) 

which is a stronger condition than that in Eq. (11). 
In terms of <wo, the squared magnitude can be 

written as 

\H^(:j<o)\' = 

We then obtain the maximum 

\H^(jm)\'' = 
b^-oA' 

(15) 

(16) 

which is also nonnegative because of Eq. (13), 
wherefc =(ao + \a'^>(aQ. 

The relative minimum at <w = 0 is given by 

\H^{G)\=Alb. (17) 

When 0) -> 00, \H2a{j(o)\ -* 0. 

The half-power points may be defined as the 
frequencies at which the magnitude response of a 
linear system decreases to (1/V^) of the peak 
response. The width between these frequencies 
represents a measure of sharpness of the magni- 
tude response near the resonance. These frequen- 
cies are determined by 

I^^O''^)l' = ll^^O'«o)P 
or 

(18) 

(19) (o*-2a>ia)^+b^ = 2(b^-<oi), 

which yields 

0)2 = a)g±V'ft'-W. (20) 

If we denote the half-power frequency on the left 
side of the resonant frequency by wi and that on 
the right side by ojz, we have 

(21) 

0)2- (i)i=2y/b^- (1)0,102 +(1)1 = 2(1)1, and 

bil(ol=2(ot-b^. 

Clearly, wl and cal are symmetric with respect to 
2 )• 
The quality factor of the system may be defined 

Q = Wo/(W2 - (Ml) , (22) 

(ol 

as 

where 0)2-0)1 may be called bandwidth of the 
system. 

Mathematically, we need three conditions to 
determine the three parameters^, a, and b. From 
the application point of view, we can express A, a, 
and b in terms of wo, o)i, 0)2, and \H\}oxi)\ from 
Eqs. (13), (16), and (21): 

^=(o;|-o)?)|//2.(;o)o)|/2, 

b^ = (ot+\{^(al-(o}f. (23) 

and 

a2=2[ V<^o + (<*^2-wi)Mo)2 + o>i)V4-o)g], 

Thus, when there is only one resonant frequency in 
the measured cw magnitude curve for an unknown 
linear system, such as that shown in Fig. 1, the 
special features such as ojo, o>i, 0)2, and |//(yo>o)| 
can be read from it. The required parameters ^4, a, 
and b can then be determined from Eq. (23), 
regardless of whether the relation o)?+o)2 = 2o)o is 
satisfied. The square of the given magnitude may 
be approximately represented by Eq. (12b), and 
the unknown linear system may be represented by 
the second-order transfer function Eq. (10a), 

H7^{s)=AI(s^ + as+b) = 
(s+al2f + p^ 

where 

i32=i-flV4. 

(24) 

(25) 

Once this is done, we then obtain the associated 
phase function in accordance with the convention 
used in (1): 

fe,(o)) = 2j arg[//2<,(-;o>)///2a(/o))] 

= tan-'[ao>/(fe-o>2)]. 

(26) 

Since a and b are positive, fta (o>) varies from 0 to TT 
when 0) varies from 0 to ». 
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Fig. 1. A squared-magnitude response with only one resonant 
frequency. 

The corresponding impulse response can be 
determined by taking the inverse Laplace trans- 
form [10] oiH^is) in Eq. (24), 

^2"(0 =4e"'"'^sini3f, t^O. (27) 

The time response R(t) of this unknown linear 
system to a general excitation e(t), cw or pulse, is 
then given by the convolution integral [10], 

R(t)=e(t)*h2ait). (28) 

If indeed the given squared magnitude curve 
with only one resonant frequency shown in Fig. 1 is 
represented by Eq. (12b) and the transfer function 
is represented by Eq. (24), the system under 
consideration will be at minimum phase, because 
this transfer function has no zero in the right half 
of the s-plane. In general, however, the system may 
also be at nonminimum phase because the actual 
transfer function could be represented by a 
product of H^,(s) and an all-pass function. In this 
case, the system transfer function with a nonmini- 
nium phase is given by 

Hn(s)=H^(s)H^i(s), (29) 

with the simplest (first order) all-pass function 
defined as 

//aii(5) = (-y-«)/(« + «), (30) 

where a is a real and positive number. 

Since |/faii(y<u)|^=l, we have 

\H„ aco)\' = \H^ Uo>)\' \HMJo>)\' = \H2. (J<oT' 
(31) 

This implies that the same squared magnitude 
curve as that shown in Fig. 1 can be represented by 
either /fa, (s) or Ha(s). 

In Eq. (30), the zero of HM(S) in the right half of 
the 5-plane is the mirror image of the pole in the 
left half of the 5-plane [8]. In general, the all-pass 
function may be of higher order with more zeros in 
the right half of the 5-plane and the same number 
of mirror-image poles in the left half of the 
j-plane. These zeros are not necessarily limited to 
the real axis. They can take complex-conjugate 
pairs. If we restrict ourself, for the time being, to 
the first-order all-pass function given in Eq. (30), 
we can make further analysis. The impulse 
response for this nonminimum-phase transfer 
function may be determined from Eq. (29) by 
convolution integral [11], 

= /i2«(0-2a/i2.(0*e-'", (32) 

where £"Ms the inverse Laplace transform. 
The impulse response can also be obtained by 

taking partial fractions of Eq. (29). That is, 

H,(s) = 
A(s —a) 

(s^+as+b) (s+a) 

^s^+as+b     s+ai 

^     (p(s+a/2)+q-ap/2 _ _p_ 1 

1      (s+a/iy + fi' s+ai'  ^■'■*^ 

where 

p =2a/(b+a^—aa), and 

q = {b-a^+aa)l(b +a^-aa), 

The impulse response is then 

(34) 

A„(0 =^ {e-'^^Ip cosiSf + ^-^ sin/Sr]-/»e-j, 

(35) 

which is the same as Eq. (32) after the convolution 
is performed. 

302 



Volume 98, Number 3, May-June 1993 

Journal of Research of the National Institute of Standards and Technology 

Both the minimum-phase impulse response h^(t) 
in Eq. (27) and nonminimum-phase impulse 
response fta(t) in Eq. (35) vanish at f =0. This can 
be confirmed by the initial-value theorem [10]. 
More detailed behaviors of Eqs. (27) and (35) can 
be learned by examining their first time derivatives, 

hL (0=1 e^'^L^ cos /a -|sin /3f]., (36a) 

and 

h;,{t)=A^(q-ap) cos pt 

-[ 
a(2q-ap) 

4p 
+ pp I sin pt\ -ain 

+Apa e' (36b) 

Clearly, at / = 0, A 2<, (0)=/i„' (0) =A. This means 
that both /i2fl(0 and hn(t) arise from 0 with the 
same starting rate. However, shortly afterward, 
they increase with different rates. At 
t = €(lP-€>0), we may expand those functions 
involved and keep the first-order term to obtain 

and 

/i2'«(e)«^(l-ae/2)2«y4(l-fle) (37a) 

h^ie)^A[l-(a+a)€]. (37b) 

Since both a and a are real and positive, we con- 
clude that 

/in(e)</i2«(e)- (38a) 

By similar steps we can also show that 

h„i€)<h^{e). (38b) 

The relations in Eqs. (38a) and (38b) imply that 
shortly after the system is excited by a source, 
/j2a (f) associated with the minimum-phase system 
increases with a greater rate than the non- 
minimum-phase counterpart /in(0- Although this 
point is drawn from a special case (first-order 
all-pass function), it can be generalized to higher 
orders even though the algebraic derivations are 

much more involved. Equations (38a) and (38b) 
also mean that more energy accepted by the 
minimum-phase system is concentrated at the 
beginning (f = 0 +) of the excitation than the non- 
minimum-phase system [7, 12]. Details on energy 
consideration are found in Sec. 6. This observation 
is very important from the standpoint of electro- 
magnetic interferences (EMI). If the minimum- 
phase system can survive the initial impact due to 
an unwanted external source, a nonminimum- 
phase system can also survive it. The minimum- 
phase system may be considered the worst case as 
far as the initial impact due to an unwanted signal 
is concerned. From the design point of view, if a 
system is minimum phase, the designer may wish to 
convert it to nonminimum phase by adding an all- 
pass network to reduce initial EMI impact. 

From Eq. (36a) we know that the first maximum 
of/i2a (0 occurs at t^, which is the smallest root of 

tan /3f =2/3/a (39) 

After reaching its first peak at tmo, the impulse 
response h^ait) varies sinusoidally with a decay 
rate of a/2 and with a period of )3. Although it is 
not as straightforward to determine the exact loca- 
tion of the first maximum for ha(t) by setting 
Eq. (36b) to 0, we know that it also varies sinu- 
soidally with the same period ;3 but decays with a 
different rate because of the extra term exp( —a/). 
A numerical example is here presented to illustrate 
this point. 

Example 1. Suppose that the square of a "mea- 
sured" cw magnitude curve can be represented by 

f(w) = e-('^-^)' (40) 

For this example, the resonant frequency occurs at 
Wo = 2. The half-power frequencies are w? = 3.1674, 
and 6)2 = 4.8326. The bandwidth is given by 
0)2-6)1 = 0.4185, and 2=4.7780. Since 
0)1 +(02 = 2(00, we can use H2a(s). The required 
parameters can be obtained from Eq. (23) as: 
a =0.4141, b =4.0857, and A =0.8326 (carried to 
4 digits). The approximate squared magnitude is 
then 

\H2.(M' = 
0.6931 

6)^-86)2+16.6931 
(41) 

By presenting the numerical results in Table 1, we 
see that the given curve in Eq. (40) and its approx- 
imation in Eq. (41) indeed match at (oi, 6)2, and (oo. 
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Table 1. Approximation of the given function in Eq. (40) by the 
squared-magnitude function in Eq. (41) 

fM \H^(ja>)\' Error 

0.00 0.0000 0.0415 0.0415 
0.50 0.0000 0.0470 0.0470 
1.00 0.0001 0.0715 0.0714 
1.50 0.0468 0.1846 0.1378 
1.75 0.4152 0.4409 0.0257 
1.80 0.5612 0.5454 -0.0158 
1.85 0.7164 0.6752 -0.0413 
1.90 0.8589 0.8200 -0.0389 
1.95 0.9617 0.9467 -0.0150 
2.00 1.0000 1.0000 0.0000 
2.05 0.9598 0.9441 -0.0157 
2.10 0.8453 0.8048 -0.0405 
2.15 0.6787 0.6414 -0.0373 
2.20 0.4938 0.4955 0.0017 
Z25 0.3234 0.3804 0.0570 
2.50 0.0063 0.1204 0.1141 
3.00 0.0000 0.0270 0.0270 

After obtaining Eq. (41), we have the following 
simplest solution to represent the transfer function 
with a minimum phase: 

H2a(s) = 0.8326/(s^+0Al41s +4.0857;.      (42) 

The associated phase function and impulse 
response are then respectively 

em(o>) = tan-^[aw/(b-(o^)] 

= tan-'[0.4141w/(4.0857-<w^)]       (43) 

and 

/i2a(O = 0-4141e-''-^°'sin(2.0107O,   t^O.     (44) 

For the same \ff2a(jo})\^ obtained in Eq. (41), we 
could also have a transfer function with a non- 
minimum phase by including an all-pass function, 
say, the first order with a = 1. We then have 

Hn(s) = 
0.8326(5-1) 

(s ^+0.4141J + 4.0857)(s +1) 
(45) 

The corresponding phase function and impulse 
function (after taking partial fractions) are 

fln(«) = »m(w) + tan-'(0>) + TT , 

with 0ra(6)) given in Eq. (43) and 

(46) 

h„(t) = [0.3564 cos(2.01070 + 0.2735 

sin(2.01070] e""-^""* 
-0.3564 e",      t^O. (47) 

The impulse responses obtained in Eq. (44) and 
Eq. (47) are plotted in Fig. 2 to confirm the con- 
clusions in Eqs. (38a) and (38b). Thus, more 
energy is concentrated in /la, (f) than in /tn(0 ^^ the 
beginning of excitation. 

Fig. 2. Impulse responses of the minimum-phase and nonmini- 
mum-phase systems with their given squared-magnitude cw 
response in Eq. (40) and the approximate squared magnitude in 
Eq. (41). 

The solutions for 0n(ft>) and ha(t) are not unique 
because they depend on the choice of specific 
all-pass functions. 

We note from Eq. (23) that the parameter a 
decreases with the bandwidth (<U2-<»i) or is 
inversely proportional to Q, and that the parame- 
ter b is primarily determined by <ao. These parame- 
ters decide respectively, in turn, the decay rate and 
period of variations of the impulse response. 

4.1.2 Second-Order Transfer Function Taking 
the Form of Eq. (10b)   For this case, we have 

H-2b{j(0) = 

and 

l//2.(;a>)|2 = 

A{c+ia)) 

b-to^+jcDO 

A^(c^+(o^) 

(48) 

o>'-(2b-a^)(o^+b^ 
(49) 
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Now there are three solutions for d|//2i(y<a)|V 
dft) = 0. One of these, w = 0, is the minimum with 
\H{0)1'^ =A^c^/b\ The other solution gives the res- 
onant frequency, 

a)i= -c' + Vc*+fe' + 2fec2-a^c^ (50) 

which is always greater than 0 (as it should be) in 
view of Eq. (14). A third solution takes the same 
form as Eq. (50) except with a negative sign in 
front of the square-root sign. This third solution is 
obviously nonphysical. 

The maximum value of the squared magnitude at 
Wo is, after substitution of Eq. (50) into Eq. (49) 
and some algebraic simplification, given by 

\Ha(j<^)\^=AV(2co^-2b+a^). (51) 

Again, this is the only maximum. The general vari- 
ation of \H2b(jo))\^ is similar to that in Fig. 1. 

The half-power frequencies (oi and oiz are deter- 
mined by 

(O^ + C^ 

(o'-i2b-a^)a}^+b^     4(a)i-b) + 2a' 

or 

(o* + (2b-a^-4(^)<o^+b''-c\4(oi + 2a^-4b) = 0. 

(52) 

Instead of solving for wi and (02, we note that 

oil + (ol = 4(oi+a^-2b, (53) 

and 
co^a)l=b^-c\4(oi + 2a^-4b). (54) 

The above derivations represent analysis for the 
particular transfer function H^(s). From the 
application viewpoint, we can express a,b, and c in 
terms of wo, (Oi, and C02 by using Eqs. (50), (53), 
and (54), 

c^ = (a)5-6>?w|)/(a>?+w|-2W), (55) 

Thus, when too, <ui, and (02 are read from a mea- 
sured magnitude curve, we can easily determine 
the required parameters b,c, and a from Eq. (55). 
Since a\ b^, and the denominator of c^ [which is 

equal to the denominator of Eq. (51)] are all posi- 
tive, and c ^ itself is nonnegative, we require 

(Oi + (i}2>2(oo   and   ft)o><wi<«)2. (56) 

In addition, the constant factor A can be deter- 
mined from Eq. (51), 

A^ = (2(oi-2b +a^)\H(j(Oo)\^ (57) 

where \H(jo)o)\^ can also be obtained from the 
given magnitude curve. 

For the special case c=0 when a)o = <ui<U2, we 
have 

b =(i}o = coi(02, 

a^ = 0)1+0)2 —2(1)0 = 0)1 +(oj-2(01(02 = ((1)2—o)iy, 

[or a =<U2-<wi], (58) 

and 

A^=a^\H(jo)o)\^,   or  A=a |//(;wo)|. 

Here, the parameter a is controlled solely by the 
system's bandwidth, and b depends only on the 
resonant frequency. Also, for this special case, <uo is 
the geometrical mean of 6)1 and (02. 

One unique feature associated with this case 
[Eq. (10b)] is that once an approximate squared 
magnitude in the form of Eq. (49) is obtained from 
the given magnitude curve by the procedures thus 
outlined, the solutions for the transfer function are 
not unique. One of the obvious solutions, herein 
designated as Hm{s) takes the same expression 
given in Eq. (10b), 

s +as +b 
(59) 

where c  is taken  as  a positive  number from 
Eq. (55). In this case, the transfer function is in 
minimum phase. 

The other solution is 

H,(s) = 
Ajc-s) 

s^+as+b ' 
(60) 

which represents a nonminimum-phase transfer 
function. 

Clearly, we have \H^(jo))\^ = \H„(Joi)\'' • 
The associated phase function for Hm(s) can be 

obtained directly from Hmijo)) as 

0m(w) = tan-'[a<u/(fe -<w^)]-tan-'('w/c).    (61) 
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The second term becomes trll when c = 0. Since 
the first term varies from 0 to IT and the second 
term varies from 0 to TTH as <i> changes from 0 to 
00, the range of variation for 0m(<w) is hence from 0 
to 7r/2. 

The phase function for Ha{s) is 

0„(6)) = tan-'[a<u/(6 -w^)] + tan-VWc),    (62) 

whose range of variation is from 0 to 317/2. 
According to the Hilbert transform given in 

Eq. (4a), the phase function 6m{oi) may also be 
obtained from the deduced squared magnitude, 

M'")=-S   f     [ln|//m(^)|/(y^-^^)]d>' 

ln()'^+c^)dy 
f /_. 

- J" 2(y^-6)2) 

(63) 

Because the integrands are even functions ofy, we 
have 

*- r IT Jo 

-- r TT Jo 

ln(y^ +c^)dy 

y' -Oi^ 

ln(y^ +m^)dy 

y '-6.^ 

InC^ +n^)dy 
y^-oi^ 

(64) 

where we have broken the last integral in Eq. (63) 
into two parts with 

m2+n^=-2A+c^   and   mW=b''.    (65) 

Since a known definite integral in the form of 
Eq. (64) is available [13], 

Jo 

= -^ tin-'(gk/fh),   f,g,h,k>0,   (66) 

we easily, after comparing Eqs. (64) and (66), iden- 
tifyg=h =l,k = (o,f=c,m, andn respectively for 
the first, second, and third integrals in Eq. (64), 
and thus obtain 

0m(w)= -tan-'(<u/c) + tan-Vw/m) + tan-'('<u/n), 

= -taa-\a)/c) + tan-\a(o/(b-(o^)      (67) 

which is identical to Eq. (61). The last step in 
Eq. (67) is accomplished by combining tan"^(<u/»i) 
and tan"'(6>/n) after using the relations in Eq. (65) 
and noting the requirements in Eq. (66). The phase 
function for Ha(j(o), however, cannot be obtained 
from the Hilbert transform. 

The derivation of Eq. (67) from |//m(;a))p is 
exact. In general, there is no fijrther approximation 
involved once an approximate squared magnitude 
in the form of a ratio of two polynomials in even 
orders of ca is deduced from a measured cw magni- 
tude curve. In fact, the phase of the minimum- 
phase transfer function can be obtained directly 
from this deduced squared magnitude with the 
help of Eq. (4a) by the method proposed here. The 
type of integral formula given in Eq. (66) together 
with the Hilbert transform Eq. (4a) can also be 
applied to H-2a(s) in Eq. (24) to obtain the same 
phase function fe (<«>) in Eq. (26). 

The corresponding impulse responses are deter- 
mined from 

Hr.is)=A 

and 

H,,is)=A 

(s+c)    _    ^+a/2+c-a/2 

s^+as+b ~     (s+a/iy + p''    ^   ' 

c+a/2-(s+a/2) 
(69) 

yielding respectively 

c-a/2 
hmiO = A e"""^ [cos pt +—;;— sin pt],   t^O, 

P 
and 

(70) 

c +al2 
ha(t) = -A e"""^[cos ^t sin ^t], t^O, 

(71) 
where /3 is given in Eq. (25). 

These impulse functions are still, basically, a 
sinusoidal function with a decay rate of a/2, even 
though the form is little more complicated than 
that of/!2a(0 givfi" in Eq- (27). Again, the decay 
rate is related primarily to the bandwidth, and the 
period of variations to the resonant frequency. 
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From Eqs. (70) and (71), we see that /im(0 + ) 
=A[= - hn(0 + )], which is different from the 
previous case where /i2fl(0 + ) = 0. Both impulse 
responses start (t = 0) at the same magnitude A. 
Since the parameter c can be greater than a/2, at 
/ = 0+, hm(t) may increase and reach the maximum 
before falling to its first zero. On the other hand, 
\hn(t)\ always deaeases beginning at t=0+.The first 
zero ofhm(t) is determined by the smallest root of 

tan pU = - l3/(c -a/2) , (72) 

while that ofha(t)is by the smallest root of 

tan)3/„ = p/(c +a/2). (73) 

A comparison of Eqs. (72) with (73) indicates, 
regardless of the relative values of c and a/2, that 
the first zero of hn(t), called taa, is no greater than 
that of/im(0> called ttao. That is. 

tnO^ UO . (74) 

The equality sign holds when c =0. 
Equation (74) implies that t^ is closer tot = 0 than 

is/mo. Thus, the beamwidth of the impulse response 
hm(t) associated with the minimum-phase transfer 
function is wider than the beamwidth of \hn(t)\ 
associated with the nonminimum-phase transfer 
function with the same squared-magnitude func- 
tion. This, in turn, means that more energy is 
concentrated, at the beginning of excitation, in the 
minimum-phase system than in the nonminimum- 
phase system. Once again, the minimum-phase 
system may be considered as the worst case as far as 
the initial impact of the system by the interference 
source is concerned. Another example is presented 
for illustration. 

Example 2. Suppose that the square of a given 
"measured" magnitude can be represented by a 
shifted Gaussian function, 

/» = 4e-^('"-^)' (75) 

The resonant and two half-power frequencies are: 
<oo=3, (Ml = 2.4113, and ft)2=3.5887, the system 
bandwidth is 1.1774, and Q =2.5480. The maximum 
at (Oo is 4. Since w? + wl is not equal to 2<uo in this 
case, we wish to approximate Eq. (75) by |//a. (/w)|^ 
given in Eq. (49). Using Eq. (55) we obtain the 
required parameters: a^= 1.3606, &^ = 87.1181, 
c^ = 8.8267, and^2^2.7725. Then 

\H^U<^)\' = 
2.7725(<o'-I-8.8267) 

a)''-17.30696)^-f-87.1181' 

which is computed together with/^(a)) in Table 2 
to show the quaUty of approximation. 

Table 2. Approximation of tlie given function in Eq. (75) by the 
squared-magnitude function in Eq. (76) 

(0 PM w^u^r Error 

0.00 0.0000 0.2809 0.2809 
0.25 0.0000 0.2864 0.2864 
0.50 0.0000 0.3037 0.3037 
0.75 0.0002 0.3350 0.3348 
1.00 0.0013 0.3848 0.3835 
1.25 0.0087 0.4607 0.4520 
1.50 0.0444 0.5768 0.5324 
1.75 0.1757 0.7579 0.5822 
2.00 0.5413 1.0493 0J080 
2.25 1.2986 1.5323 0.2337 
2.50 2.4261 2.3206 -0.1055 
2.75 3.5300 3.3844 -0.1456 
3.00 4.0000 4.0000 0.0000 
3.25 3.5300 3.3851 -0.1449 
3.50 2.4261 2.3215 -0.1046 
3.75 1.2986 1.5294 0.2308 
4.00 0.5413 1.0396 0.4983 
4.25 0.1757 0.7398 0.5641 
4.50 0.0444 0.5495 0.5051 
4.75 0.0087 0.4231 0.4144 
5.00 0.0013 0.3356 0.3343 
5.25 0.0002 0.2728 0.2726 
5.50 0.0000 0.2264 0.2264 

The computation is carried out only from <u = 0 to 
0) =5.50. The approximation around the important 
region near w = wo=3 is very good, while that near 
the two ends (w = 0 and (o = 5.50) is marginal. 
Physically, however, the less accurate results near 
the two frequency ends are of secondary impor- 
tance. 

If we deal with |fl^2t(;<w)p alone without includ- 
ing extra all-pass functions, we have two possible so- 
lutions for the transfer function, one with a 
minimum phase and the other with a nonminimum 
phase. 

//m(j) = 

and 

H,is) = 

(76) 

1.6651(5+2.9710) 

5^1.16649+9.3337 

1.6651(5+0.5832 + 2.3878) 

(5+0.5832)^ + 2.9989^ 

1.6651(2.9710-5) 

5^ + 1.16645+9.3337 

1.6651[3.5542-(5+0.5832)] 

(5+0.5832)2+2.9989^ 

(77) 

(78) 
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The corresponding phases are 

0„(<u) = tan-'[1.1664w/(9.3337-w')] 

-tan-V6>/2.9710) (79) 
and 

e„((o) = tan-'[1.1664w/(9.3337-<u^)] 

+ tan-YW2.9710) (80) 

The impulse responses are 

and 

/i™(0 = 1.6651[cos(2.9989r) 

+ 0.7962 sin(2.9989r)] e""-^"^ 

A„(0= -1.6651[cos(2.9989r) 

-1.1852 sin(2.99890] e'''-^^^^ 

(81) 

(82) 

Thus, this method not only yields a solution with 
a minimum-phase transfer function such as by the 
conventional numerical method described in Sec. 3, 
but also gives other possible solutions with non- 
minimum-phase transfer functions. 

Figure 3 shows hmiO and \ha(t)\ for comparison 
purpose. Evidently, both /im(0 and \hnit)\ begin at 
/ = 0 with a magnitude of 1.6651. Then h,a(t) 
increases to its maximum of 1.9030 at r =0.1602, 
and -hn(t) starts to decrease. The first zero of 
ha(t) is at / = 0.2337, while that of hm(t) is at 
r =0.7480. Also, |/l„(/)|max < |Ani(0|max in tWs CBSC. 
More energy is concentrated in ^m(0 than in h„(t) 
near f =0. 

\\ 

^ 

W'^ ^ 

Vy 
! 3 

Time, s 

Fig, 3. Impulse responses with the given cw squared-magnitude 
response in Eq. (75) and the approximate squared magnitude in 
Eq. (76). 

Comparing Eqs. (77) and (78), we may also ex- 
press Hn(s) in terms of Hm{s) and a first-order 
all-pass function: 

t7 / \    17 / \ 2.9710-g H.(s)=H^(s) 2.9710+,- (83) 

In general, the solution obtained in Eqs. (69) 
and (71) is not the only one with a nonminimum 
phase. In fact, the same given magnitude curve can 
also be represented by the product of Hm(s) [or 
Ha(s)] and additional all-pass functions. The solu- 
tions depend on the choice of these extra all-pass 
functions. 

4.2   First-Order Transfer Function 

The two types of the second-order transfer func- 
tion analyzed in Sec. 4.1 are the most important 
ones which can be used to approximate a measured 
magnitude curve with only one resonant frequency 
not at w =0. For studies of radiated susceptibility, 
these may be sufficient because it is difficult or 
meaningless for an antenna to measure the inter- 
ference response of linear systems at <u = 0. How- 
ever, when the dc interference is also possible, in 
addition to the cw interferences, for some practical 
systems, the response at co = 0 may constitute a 
relative maximum. To cover this case, we can 
approximate this part of the given measured 
magnitude curve by a squared magnitude corre- 
sponding to the first-order stable transfer function 

Hi{s)=A/is+a), (84) 

where A and a are real and positive. Its squared 
magnitude is 

\Hi(j<a)\'=AV((o'+a^). (85) 

Obviously, its only maximum occurs at w =0, with 
\Hi(0)\^ = (A/a)^.   A   representative   curve   for 
|//i(y<u)p is shown in Fig. 4. 

The half-power frequency may be determined by 

l/(a>^+a^) = l/{2a^), (86) 

which yields only one solution 0)2=a (the other 
half-power frequency  (oi=-a  has  no physical 
meaning). The bandwidth in this case is just 2(02. 

The associated phase function can be obtained 
either from //i(;w) or from the Hilbert transform, 

ei((o) = tan-\o)Ia), (87) 

which varies from 0 to Tr/2 as co varies from 0 to ». 
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1.0   -p;- 1 ] 1 •  

0.8 -V  

I   „ , \  
1 \ g. ^„ \^^  

0.2 —^^  

1   ("2) 2 3 

Radian frequency, rad/s 

Fig. 4. A squared-magnitude response corresponding to the 
first-order transfer function, normalized Eq. (85). 

The corresponding impulse response is 

hi(t)=Ae-',   t^O. (88) 

The decay rate in this case equals numerically the 
half-power frequency. 

43   More General Case 

For a more general case where the measured 
magnitude curve has N>1 distinct resonant 
frequencies, it may be approximated with our pro- 
posed method by a sum of terms of the type 
|^2oOft')P or {ff^U'^W discussed in Sec. 4.1. To 
simplify the notation, let us temporarily drop the 
subscript a and b while maintaining the subscript 2 
to indicate the order of the transfer function being 
considered. The approximated squared magnitude 
will then take the form: 

\Hu<»r = i W2iij<oW (89) 
i-1 

with the required parameters a,b,A, and possibly 
c in each \H2(j^)? to be determined by the out- 
standing features associated with each resonant 
frequency. Should there also be a relative maxi- 
mum at 0) = 0, another term in the form of Eq. (85) 
for a first-order transfer function may be added to 
Eq. (89). Once this approximation is accomplished, 
the system transfer functions can then be deduced 
by the classical method [8]. We can then determine 
from these transfer functions the corresponding 
phase functions and impulse responses to give the 

complete characteristics of the unknown linear 
system. Another example is given below to illus- 
trate this point. 

Example 3. Suppose that the square of a mea- 
sured cw magnitude curve can be represented by a 
sum of two mathematical expressions 

where 

/»=/?(a,)+/|(^), 

m<o)=^- 

(90) 

(91) 

is used to simulate a possible maximum at w = 0, 
and 

fU(o) = 4e-^<^--^^' (92) 

is simulated for a possible resonant frequenqf at 
<uo=3. The expression in Eq. (92) is the same as 
that presented in example 2. 

Since the maximum of/?(&)) occurs at w = 0 with 
/i(0) = l, and the half-power frequency is 
6)2 = 0.3466, we approximate fi(co) by a linear 
system with lumped-constant elements represented 
by a squared-magnitude function in the form of 
Eq. (85), 

\H,iJ<or = 
0.3466=* 

w^+0.34662' 
(93) 

which is plotted in Fig. 5 together with /i(w) to 
show the approximation involved. 

1.0 

l\^ -|H,(J„)|2 

i 
\ 

^ 
\   ;!(») 

0.2    ■ 

^ 
^^==^ 

1.0 1.5 2.0 

Radian frequency, rad/s 

Fig. 5. Comparison of functions given in Eqs. (91) and (93). 
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For /l(w), we have wo = 3 with /2(3) = 4. 
The half-power frequencies (wi =2.4113 and 
0)2 = 3.5887) have been obtained in example 2. 
Even though the relation <uo = 6>i6>2 is not satisfied, 
this time we choose c=0 in H-2b{s) to make a 
better approximation at w = 0. The other required 
parameters are determined from Eqs. (55) and 
(57):fe=w§ = 9, fl2 = ^2+^|_2^2 = o.6931, a = 
0.8325, and A^=a^fl{3) = 2.1125. We then have 
the following to approximate the given/^w): 

\Hv,(J<»)? = 
2.7725a»^ 

0) "-17.3069^2+ 81' 
(94) 

which is plotted in Fig. 6 together with the given 
fl{(a) for comparison purpose. The approximation 
shown here may be compared with that shown in 
Table 2, where c is chosen not equal to 0. 

i \ 

^\M 

7 V .|"2b""f 

/ \ 

^ 

1/ \ 

^ 
2 3 

Radian frequency, rad/s 

Fig. 6. Comparison of functions given in Eqs. (92) and (94). 

The total squared magnitude to approximate 
/^(<w) in Eq. (90) is then given by the sum of ex- 
pressions in Eqs. (93) and (94): 

0.1201 2.77256J' 
l^^^*")!   - ^2+0.1201 ^ 0)"-17.30690)2 + 81 

2.8926(a)^ - 0.60366j^ + 3.3639) 
" (a)'+0.1201)(ft)''-17.3069w'+81) 

= H(s)H(-s)\s.i., (95) 

which is plotted in Fig. 7 together v/ithp((o). 

f2{»)// V"-f 

// 
\ 

// \ 

V _y ̂  ^ ̂  -.  
2 i 

Radian frequency, rad/s 

Fig. 7. Comparison of the functions given in Eqs. (90) and (95). 

From Eq. (95) we can apply the classical method 
in network theory [8] to extract the transfer func- 
tions as follows: 

H(s)H(-s) = 
2.8926(,y ^+0.6036? ^ + 3.3639) 

(0.1201-s')(«*+17.30695^ + 81) 

2.8926Ar(j) 

Dis)     ' 
(96) 

where 

N(s) = (5^ + 1.75069 + 1.8341) 

(s2-1.7506y +1.8341), 

and 

(97) 

D(s) = (0.3466+5)(0.3466-5')x 

(s 2 + 0.83255 + 9) (s 2 - 0.83255 + 9). (98) 

From the formats specifically expressed in Eqs. 
(97) and (98), we can assign appropriate factors to 
H(s) and H(-s). Obviously, the factors with 
positive signs in Eq. (98) have to be assigned to the 
denominator of H{s) because the poles are 
required to be in the left half of the s-plane for the 
linear system to be stable. The remaining factors in 
Eq. (98) with negative signs belong to the denomi- 
nator oiH(-s). However, either factor in Eq. (97) 
can be assigned to the numerator of H(s) because 
the zeros can be in the left-half or right-half plane. 
If the zeros are in the left half-plane, the system is 
at minimum phase. If they are in the right half- 
plane, the system is at nonminimum phase. Thus, 
we obtain the minimum-phase system. 
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1.7008(^'+1.7506y +1.8341) 
^"•(*) - (52+o.3466)(j' + 0.8325s+9) 

= 1.7008[0.1526/(j+0.3466) 

+ (0.8474s +1.3299)/(5 2 + 0.8325^ + 9)], 

(99) 

and the nonminimum-phase system, 

1.7008(^^-1.7506? +1.8341) 

"^^^ ~ (s+0.3466)(5^+0.8325s+9) 

= 1.7008[0.2900/(s+0.3466) 

+ (0.7100$ -2.2381)/(s 2+0.8325s +9)]. 

(100) 

We can verify that \Hm(J<o)? = Wo(J<^T ^^^ that 
they both equal the squared magnitude in Eq. (95). 
Now, the nonminimum-phase transfer function in 
Eq. (100) can also be expressed in terms of the 
minimum-phase transfer function in Eq. (99) and 
an all-pass function 

//n(s)=//„,(s)/faii(s), (101) 

where 

HM(S) = (s^-1.7506y +1.8341)/ 

(sHl.750dy +1.8341), (102) 

is   a   second-order   all-pass   function   with   the 
complex-pair zeros in the right half-plane as mirror 
images of the poles in the left half-plane. 

The associated phase functions are respectively 

0m(w) = 0i(w) + 02(<u)-03(<w) (103) 

and 

0n(w) = 0i(w) + 02(a)) + fl3(6>), (104) 

where 61 and 62 are due to the denominator factors 
in Eq. (99) and di is due to the numerator in 
Eq. (99). They are: 

ei(a>) = tan-'(w/0.3466), 

62(0)) = tan-'[0.8325«/(9-a)^)], 

and 

diito) = tan-'[1.75066>/(1.8341-a)2)].(i05) 

The minimum phase 0m(w) in Eq. (103) can also be 
obtained from Eq. (95) with the Hilbert transform, 
as demonstrated before. 

The impulse responses are: 

/i„(0/1.7008 = 0.1526 e-°-^^ 

+ [0.8474 cos(2.97100 

+ 0.3289 sin(2.97100 e"""'*^ (106) 
and 

/i„(0/1.7008 = 0.2900 e -0.346A 

+ [0.7100 cos(2.97100 

-0.8528 sin(2.9710O e-""!'*^ (107) 

where both hmit) and ha(t) are normalized with 
respect to the common constant factor 1.7008. 

The normalized impulse responses in Eqs. (106) 
and (107) are plotted in Fig. 8. Here, they both 
start with 1 at t = 0. The normalized hait) 
decreases much faster than the normalized hm(t). 
Thus, hn(t) has a narrower beamwidth than /im(0, 
or less energy is concentrated initially with ha(t) 
than with hm(t). 

\ V""' -h„(t) 

\\ V /; 

\\ 
V ̂ y 

2 3 

Time, s 

Fig. 8. Normalized Impulse responses of the linear system with 
its given cw squared-magnitude response in Eq. (90) and the 
approximate squared magnitude in Eq. (95). 

The procedures demonstrated in example 3 can 
be easily extended to cases with more resonant 
frequencies, where there will be more terms in Eq. 
(89). More algebraic processes will be involved. 
When   extracting   transfer   functions   from   the 
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approximate squared magnitude, we will find more 
combinations for those with nonminimum phases 
while there is still only one solution for the transfer 
function with a minimum phase. Once the transfer 
functions are obtained, the remaining task for 
determining the corresponding phases and impulse 
responses is relatively straightforward. Determina- 
tion of passive elements and a specific circuit 
structure to represent the extracted transfer 
function is a typical network synthesis problem 
[4, 8, 9], which is not within our scope of analysis. 
Once a network is synthesized, we can then use this 
model to make further analysis and even measure- 
ment of the network response due to any excita- 
tion, cw or pulse, with little effort and cost. 

One caution, however, must be exercised for 
dealing with the cases where two resonant frequen- 
cies happen to be very close together. In these 
cases, the half-power frequencies associated with 
each resonant frequency must be entered into the 
computing process with smaller values than the 
actual values such that the final approximate 
squared magnitude still exhibits two distinct 
maxima at those resonant frequencies (rather than 
smeared together to have only one maximum). 

The three examples presented so far are simu- 
lations where the given magnitudes are expressed 
in terms of neat mathematical functions and the 
resonant frequencies are small and easily manipu- 
lable numbers. In the real world, this is definitely 
not the case. Our goal is still to deduce an approxi- 
mate squared magnitude from the given measured 
cw magnitude data so that a set of transfer 
functions and related characteristics can be deter- 
mined and analyzed. Another example under this 
situation will be presented later in Sec. 5. 

to use (oo = 2 to avoid manipulations with large 
numbers. After obtaining \H^(j<o)\\ H2a(s), 
Omi(o), and /j2fl(0 i" Eqs. (41) through (44), we 
can apply Eq. (108) with B =2v(10y to transform 
the results from <u to <u' with a)=ci>'/B. Thus, the 
solutions in Eqs. (41-44) become respectively 

\G^(joj'r = 
0.69315^ 

o)'*-8B^o>'^+l6.6931B* 

G^(s') = 

- G2a(s')G2ai-S%;j^-, 

j'H 0.41415s' + 4.0857B 2' 

0™(w') = tan-'[0.41415w7(4.08575^-<u'2)]. 

and 
(109) 

h7.it) = 0.4141B e-"-^'^'"sin(1.0107BO- 

These procedures apply also to the other type of 
second-order and higher-order transfer functions. 
With this explained, we now are ready to give 
another example based on the real-world data 
shown in Fig. 9. The data represent the measured 
but normalized electric fields (magnitude) of verti- 
cal polarization, reflected from a helicopter when it 
is irradiated by an impulse signal. By examining the 
curve in Fig. 9, we notice four significant resonant 
frequencies at 16.50,26.25, 41.00, and 53.375 MHz. 
The frequency near 3 MHz is ignored because 
its magnitude response is rather small (close to 
background noise). It can, however, be added if 
necessary. 

5.   Frequency Transformation 

In Sec. 4 the variable (o was loosely called 
frequency. Strictly speaking, a> is the normalized 
radian frequency. It can be translated into any 
frequency of interest by a simple frequency 
transformation [8], 

(a' = Boi, (108) 

where £ is a normalization constant, (o is the 
normalized radian frequency, and o>' is the actual 
radian frequency. 

In presenting example 1 in Sec. 4.1, we cited 
(UQ = 2 as the resonant frequency. If the actual 
resonant frequency occurs at 20 MHz, we should 
have used wo = 4ir(10)^ rad. Instead, we chose then 

30 40 50 

Frequency, MHz 

Fig. 9. Measured electric-field magnitude (vertical polarization) 
reflected from a helicopter when radiated by an external 
impulse signal. 
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To simplify the analysis, we temporarily designate 
0)01=27r X 16.50=103.6726, 6>o 2=52.5Tr=164.9336, 
6>o3 = SITT = 257.6106, and a>04 = 106.757r = 335.3650. 
From Fig. 9, we also see that the respective 
maximum responses at these i-esonant frequencies 
are 14.00 (22.92 dB), 52.52 (34.41 dB), 13.00 (22.28 
dB), and 5.33 (14.53 dB). Their half-power 
frequencies are approximately a)ii = 29ir = 91.1062, 
<u,2=36ir= 113.0973; 6)21=467r=144.5132, m2=59Tr 
=1853540; 6)31=7617=238.7610, o)32=90'ir=2817433; 
and 0)41 = 10417=326.7256, 0)42=108.6-77=341.1770. 
Here the first subscript refers to the resonant 
frequency, the second subscript 1 refers to the half- 
power frequency on the left side of the respective 
resonant frequency, and the second subscript 2 
refers to the half-power frequency on the right side 
of the respective resonant frequency. The two half- 
power frequencies, a)i2 = 36ir and 0)31 = 76-77, are 
not real, but extrapolated for the analysis. Also, we 
later use B = 10*, in accordance with Eq. (108), as 
the transformation constant. 

Even though the condition o)i + o)2 = 2o)o is not 
exactly satisfied at either of the four resonant 
frequencies, we choose to use the type of second- 
order transfer function in Eq. (10a) for obtaining 
the approximate squared magnitudes. Using Eq. 
(23), we have for the first resonant frequency at o)o 1, 

yl 1=3.1435(10"), 61 = 1.0980(10"), ai = 21.5420, 

and 

|//iO'«)P=9.8816(10'')/[o)"-2.1496(10")a)^ 

-1-1.2056(10^)]; (110) 

for the second resonant frequency at 0)02, 

y42 = 3.5377(10*), Z)2 = 2.8025(10"), 02 = 40.5358, 

and 

|//2(j<u)|2 = 12.5153(10>'')/[o)" - 5.4406(10")o)2 

-)-7.8538(10»)]; (111) 

for the third resonant frequency at 0)03, 

y43= 1.4909(10'), 63=6.7347(10"), 03=44.3546, 

and 

|//3(yo))p=2.2228(10^'')/[o)"- 1.3273(10*)o)^ 

-1-4.5356(10'')]; (112) 

and for the last resonant frequency at o)04, 

^4 = 2.5723(10"), 64 = 1.1257(100, 04=14.3871, 
and 

|//40'W)|'=6.6166(10'')/[O)"-2.2494(100<M' 

-1-1.2673(10"')]; (113) 

The final approximate squared magnitude is then 

|i/(;o))P=|//iO-a>)|^-h|//2(;o))P + |//3(;o))P 

+ l^4(;o))P 

= 1.4903(10")iV(o)0/£> (o)^),       (114) 

where 

N(<o^) = o)>2-3.6694(100«*°+5.1348(10"')o)'' 

-3.4113(10'0o)« +1.0820(10^") 0)" 

-1.3940(10^") 0)^-1-6.2996(10") 

= [O)"-2.1747(10")O)2-1-1.2577(10*)] 

X [O)"-1.2098(10')O)^-I-3.9741(10")] 

X [o)"-2.2422(100<w'+1.2615(101")], 

(115) 

and D(o)^) is the product of the four denominators 
in Eqs. (110) through (113). The magnitude in 
Eq. (114) is shown in Fig. 10 together with the 
component magnitude functions obtained in Eqs. 
(110) through (113). Comparing Figs. 9 and 10, we 
see, except the frequency scale, the approximation 
in Eq. (114) is generally very good. The dominant 
features at 0)02 and its half-power frequencies are 
indeed excellent. The shifts in o)oi, and 0)03, are 
minor. The position of o)0 4 remains practically the 
same. The only major changes are the magnitudes 
at o) = 0 and o)oi. This deficiency can be improved 
if we choose the second-order transfer function of 
Eq. (10b) or the approximate squared-magnitude 
function in Eq. (49) with c =0 at the beginning for 
|//2(7<w)p. From Eq. (115) we already see the large 
coefficients even when we used the normalized 
frequency to begin with. If we wish to convert the 
frequency into megahertz, the numerator in Eq. 
(114) will become 

(l/5'0[o)"-2.1747(10")5^ft)H 1.2577(10^)5"] 

X [o)"-1.2098(10^)5 ^o)^ + 3.9741(10')5"] 

X [o)"-2.2422(10*)5^o)2-t-1.2615(10"')5"], 

(116) 

313 



Volume 98, Number 3, May-June 1993 

Journal of Research of the National Institute of Standards and Technology 

and the denominator of Eq. (114) will become 

(1/fi'") [w*-2.1496(10*)5^w^ +1.2056(10^)5*] 

x[co*- 5.4406(10^)5 W+7.8538(10^)B *] 

x[co*-1.3272(10^)5 W+4.5356(10')5"] 

X [w*-2.2494(10^)52a)2+1.2673(10"')5^], 

(117) where 5 =10*. 

20 30 40 

Frequency, MHi 

Fig. 10. The approximate magnitude to that in Fig. 9, together 
with component magnitude functions identified for each 
resonant frequency, where \H(J<o)\=[\HiUa>)\^+\H2U<'>)\^ + 
|//,(ya,)|2 + |//40-a.)|^]'«, Eq. (114). 

Referring to Eq. (114) and setting \H(J(o)\^ 
=H(s)H(-s)\s^ja, we obtain 

H{s)H(-s) = lA9Q3(W)N(-syD{-s^), 

where ^    ^ 

(119) 
and 

£>(-s^)=D,(+)Z>2(+)D3(+)D4(+)D,(-) 

xD2(-)£>3(-)£>4(-), (120) 
with 

iVi( + )=5^ + 26.1252s+ 1.1215(10*), 
Ari(-)=5^-26.1252s+ 1.1215(10*), 

Ar2( + )=52 + 71.42295 +6.3040(10*), 
N2(-)=s''- 71A229S + 6.3040(10*), 

A^3( + )=^'+ 20.51395 + 1.1232(10^), 
A^3(-)=5^-20.5139s +1.1232(100; 

I>i( + )=5^ + 21.542Qs+ 1.0980(10*), 
Di(-)=s2-21.542Qy+ 1.0980(10*), 

D2( + )=s^+40.5358;y + 2.8025(10*), 
Z)2(-)=5'-40.535&s +2.8025(10*), 

£>3( + )=J^ + 44.354& +6.7347(10*), 
£)3(-) =.y2 - 44.3546y + 6.7347(10*), 

£)4( + ) =5^+14.38715+ 1.1257(10'), 
D4(-)=5^-14.38715+ 1.1257(10'). 

Since we require the system to be stable (no 
poles in the right half of the 5-plane), we have to 
assign Di(+)D2(+)I>3(+)I>4(+) as the denomi- 
nator for H(s). Thus, Di(~)D2i-)Di(-)D,(-) 
belongs to H(—s). As far as the numerator for 
H(s) is concerned, we have many choices from 
Eq. (119). WhenM( + )A^2( + )A^3( + ) is assigned as 
the numerator of H(s), Ni(-)N2(-)N3(-) then 
belongs to H(—s). In this case, there are no zeros 
in the right half of the 5-plane. The result is a 
minimum-phase transfer function. We then have 

H^(s) = 3.8604(10')M( + )iV2( + )A^3(+)/ 

[£),(+)D2(+)£>3( + )D4( + )] 

,   . (Fis+Gi     F2S+G2 
= 3.8604(10')  -^—- + —- + 

^     ^l £>.( + )       D2( + ) 

F3S+G3     F4S+G4 

Z»3( + )     "^    04 + ) }■ 
where 

(121) 

Fi = 2.3245/10*, Gi = 1.3664/10^ 

^2 = 5.3398/10*, G2 = 0.8742, 

F3=-6.8335/10*, G3 = 0.1055, 

F4=-8.3091/10', G4 = 1.7752/10'. 

Applying the following two Laplace transform 
pairs [9] to Eq. (121): 

(5 + a)/[(s + ay + p^]   <^   e""' cos ^t ,   (122a) 

and 

l/[(5 + a)^+^^]   ^   (1/13) 6-" sin ^t,   (122b) 

we obtain the impulse response of this system, 

/i4O = 3.8604(100{(0.2325cos;3,r+0.1071sin/3,O 

X e-"" + (0.5340 cosySz^ +5.1959 sin fiit) e-"^' 

+ (-0.6833 cos i33f +0.4665 sin /SsO e""'' 

+ (-0.0831 cos )34r + 0.0071 sin p^t) e'"" } , 

(123) 
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The associated phase is given by 

9mi(0)   =  0l(6)) + 02(<a) + 03(<u)+04(<u) 

- dsio)) - 06(<w) - 9^((o) , (124) 

where the first four component phases are due to 
r>i(+)r>2(+)I>3(+)Z)4(+), and the last three are 
due to Ni{+)N2{+)Ni{+). That is, 

_, r      21.5420aj       1 

M-) = tan-[j0930(100-.>^J' 

, r      40.5358^       1 
02(a)) = tan"^ r   , 

^  ' 12.8025(100-6)'-I 

_, r     44.35460)      1 

^^('"^ = ^^'^[6.7347(100-0,^' 

, r      14.3871W      1 
GJo}) = tan"^  :—i    , 

^   ' Ll.l257a0=^-w'J 

ai = ai/2, and /Si = y/bi-icnHf,i = 1,2,3, and 4. 

More specifically, we have 

ai = 10.7710,    a2=20.2679,       a3=22.1773, 
04=7.1936,     /3i = 104.2305,     ;32=166.1740, 
/33 = 258.5634, /34 = 335.4422. 

Equation (123) shows that at f =0, hm{t) = Q. This 
agrees with the result predicted by the initial-value 
theorem [10, 12]. The largest coefficient is with 
sin)32? associated with the second resonant 
frequency. This is obvious when we refer to Fig. 10 
where <uo2 is dominant. 

With the impulse response so determined, the 
system's response to a general excitation can then 
be computed by convolution integral [12]. When 
referring to frequencies in megahertz, we simply 
modify the impulse response in Eq. (123) by multi- 
plying the coefficient 3.8604(10^, «■, and 
/3, (i = 1,2,3,4) by the transformation constant 
B = 10*. The impulse response hm(t) before apply- 
ing the frequency transformation is presented in 
Fig. 11, where the coefficient of 3.8604(10^ in Eq. 
(123) has been dropped. We see, from Fig. 11, that 
the period is about 0.019 s, giving 0.019 )82«Tr. The 
major maximum occurs approximately at 
fi = 0.008 5 with ;tm(fi)/3.8604(100 = 5.3094, and 
the second maximum occurs approximately at 
^2 = 0.026 5 with A„(r2)/3.8604(100= -3.2652. The 
ratio of hm(ti)/\hm(t2)\ = i.6261, which is close to 
ga2((2-'i). Thus, the second resonant frequency is, in- 
deed, the dominant one [14]. 

.1257(100-6, 

26.12520, _, r      26.12520,      1 

'^('"^ = ^^"" L 1.1215(100-CO'J- 

, r      71.42290,       I 

^^(") = ^^""L6.3040ri00-o,'J' 

and 

07(0,) = tan' 

-6.3040(10" 

20.51390, , r      20.51390,       1 

L 1.1232(100-6,'J'    (^^^ 

0.04 

Time, s 

Expressing the phase in terms of megahertz, we 
multiply the numerator inside the arctangents by 
the normalization constant B and the constant term 
in the denominator by 5'. The minimum phase dm 
in Eq. (124) before frequency transformation is 
presented in Fig. 12. 

Seven other possible solutions for the transfer 
function with nonminimum phases can be obtained 
from Eqs. (118) and (119) as 

H,i(s) = CNii + )N2( + )N3i-), 
Hnlis) = CNi( + )N2(-)N3( + ), 
Hn3(s) = CNi(-)N2( + )N3( + ), 
HMs) = CNi( + )N2(-)N3i-), 
H,^(s) = CNi(-)N2( + )N3i-), 
H„,(s) = CNi(-)N2(-)N3( + ), 

and 
Fig. 11. Normalized impulse response of the linear system 
whose approximate magnitude of the transfer function is shown 
in Fig. 10. This is for the minimum-phase case with its transfer 
function given in Eq. (121). 

H.-,(s) = CN,{-)N2i-)N3(-), (126) 
where 

C = 3.8604(100/[I>i( + )i52( + )I>3( + )I>4( + )]. 
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Fig. 12. Phases of the sample linear system whose approximate 
cw magnitude response is shown in Fig. 10. 

Following the same procedures of partial 
fractions as in Eq. (121), we list the expansion 
coefficients for the 7 nonminimum-phase cases in 
Table 3. 

The corresponding impulse responses also take 
the same form as in Eq. (123) with the same or,- and 
Pi but with different coefficients associated with 
the cosine and sine terms. These coefficients are 
listed in Table 4. 

These impulse responses with nonminimum 
phases, without including the frequency transfor- 
mation, are shown in Figs. 13 (a) and (b) to com- 
pare with that in Fig. 11 for the minimum-phase 
case. It happens that the first maxima of hm{t) are 
all below the first maximum of hm{t), and that the 
first nulls ofhai^t) are also closer to the origin than 
the first null ofhmit). More energy is concentrated 
near t=0 in hm(t) than any of the hm(t), 
'■ = 1,2 7. 

/V"' 
A^Vn- 

Y 
''n2^^''n4 

/            \\ \  i<y IW J ̂ --^ 
\ 1 y \/ 

\y 

0.04 

Time, s 

Fig. 13 (a). Normalized impulse response of the helicopter with 
the approximate magnitude response given in Fig. 10, but with 
the nonminimum-phase transfer functions given in Eq. (126). 

Table 3. Partial fraction expansion coefficients for nonminimum-phase transfer functions 

Non-Min. fiXlO' GiXlO fjXlO' G^ FjXlO' G3XIO f 4X10^ 64X10 

nl 0.2290 0.1470 0.1253 0.8842 -0.8235 0.6849 4.6925 0.1281 
n2 0.2017 0.2034 -3.0480 0.8467 2.8954 1.1708 -0.4910 0.2434 
n3 -2.5895 -0.0188 3.2415 0.8940 -0.5711 1.5046 -0.8103 0.0653 
n4 0.1952 0.2124 -3.5248 0.8083 2.9958 2.9139 3.3377 -1.2197 
n5 -2.6114 -0.1339 2.8849 0.9406 -0.7427 1.2150 4.6927 -0.1422 
n6 -2.6634 -0.8067 -0.2450 1.1784 2.9444 -0.6197 -0.3600 0.2700 
n7 -2.6541 -0.9251 -0.8178 1.1789 3.2050 1.0964 2.6693 -1.4034 

Table 4. Coefficients associated with cosine and sine terms in impulse responses for nonminimum-phase cases 

Non-Min. cosiSi/ sin)3i/ cos;32f sinj82/ cosft/ sinjSj/ cosy34/ sin/34< 

nl 0.2290 0.1174 0.1253 5.3059 -0.8235 0.3355 0.4692 0.0281 
n2 0.2017 0.1743 -3.0486 5.4673 2.8954 0.2045 -0.0491 0.0736 
n3 -2.5894 0.2496 3.2415 4.9846 -0.5711 0.6309 -0.0810 0.0212 
n4 0.1952 0.1836 -3.5248 5.2943 2.9958 0.8700 0.3338 -0.3708 
n5 -2.6114 0.1414 2.8849 5.3084 -0.7427 0.5336 0.4693 -0.0525 
n6 -2.6634 -0.4987 -0.2450 7.1213 2.9444 -0.4922 -0.0360 0.0813 
n7 -2.6541 -0.6133 -0.8178 7.1940 3.2050 0.1491 0.2669 -0.4241 
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Fig. 13 (b). Normalized impulse response of the helicopter with 
the approximate magnitude resfwnse given in Fig. 10, but with 
the nonminimum-phase transfer functions given in Eq. (126). 
Continuation of Fig. 13 (a). 

The phases associated with the transfer function 
in Eq. (126) are respectively: 

flnl = 01 +02+^3+04-0s-I 

0n2 = 01+02+03+04-05+1 

0n3 = 01+02+03+04+05-1 

0„4 = 01+02+03+04-05+1 

0n5 = 01+02+03+04+05-06+07, 

0n6 = 01+02+03+04+05+06-07, 

S+07, 

i—07 , 

j-07, 

S+07, 

and 
(127) 0n7 =   01 + 02+03+04+05+06 + 07, 

where 

0,,  1=1,2,.... 7,  are given  in  Eq.   (125) 
before normalization. 

Graphs for 0ni are also plotted in Fig. 12 for 
comparison purpose. Clearly we see that 0„i > 0m, 
because each component phase given in Eq. (125) 
is nonnegative, varying from 0 to TT as <a varies from 
Oto 00. 

6.   Consideration of Energy Contents 

To assess the ability of a system to withstand 
damage from an external unwanted excitation, it is 
often useful to compute the energy content associ- 
ated with an impulse response [15]. Indeed, if h(t) 
represents a voltage waveform across a 1 fi resis- 
tor, the quantity 

Jo 
h\t)6t. (128) 

equals the total energy delivered to the resistor by 
the impulsive excitation [2]. Equation (128) also 
represents the area under the curve h ^(t). 

The energy E may also be computed, in view of 
Parseval's theorem [2], by 

E=£\jH(jcor6a>. (129) 

Thus, when the minimum-phase impulse response 
hmit) and the associated nonminimum-phase 
impulse response ha(t) have an identical \H{j(o)\\ 
their respective total energies [in 0^f=S <»] are 
equal even though ha(t)<hm(t) during the initial 
period near / = 0 +, as discussed in Sec. 4. These 
facts can also be demonstrated by referring to the 
examples given earlier. 

For example 1 in Eq. (40), \H2a(J'^W is given 
in Eq. (41). Its energy content, according to 
Eq. (129), is 

E = 
0.6931 

2v 

0.6931 

IT 

^   — 0 

Jo 

d(o 

6)"-86)2+16.6931 

da> 

(co'+p'Xco'+p*') 

;1.66507r  Jo   \-o>^+p^     <«='+/?*'J 

= 0.2049, (130) 

where 

p^ = -4-;0.8325, and 
p* - complex conjugate of p. 

The last step in Eq. (130) is obtained by using 

'" co?,{qx)dx      IT 

Jo x^+p^        2p 

with   q^O 

and   Re(j>)>0 

= — e-'P, 

(131) 
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We can also obtain the energy by referring to 
the impulse response given in Eq. (44) for the 
minimum-phase case, 

£»=    f   hl(t)dt 
Jo 

= 0.1715   f   6-°''*°'sm\2.0l07t) dt 
Jo 

= 0.2049, (132) 

which is indeed the same as in Eq. (130). 
Using the corresponding impulse response given 

in Eq. (47) for the nonminimum-phase case yields 
the same result. That is, 

i:o=    f   h'„(t)dt = 0.2049. (133) 
Jo 

For example 2 presented in Eq. (75), the corre- 
sponding \H2b (yw)|^ ^m(0> ^^^ ^n(0 can be found 
respectively in Eqs. (76), (81), and (82). The total 
energy for this system is 

£=^  /_. \f^^»0'co)\^dai 

-f 
Jo 

Jo 

h^iO dt 

hl(t) dt 

= 2.3124. (134) 

If we replace the upper integration limit « in 
Eq. (128) by a finite T, we can analyze the energy 
content absorbed by the system during the initial 
period after an external excitation is applied. 
Referring again to example 1 with /i2a(0 given in 
Eq. (44) and hnQ) in Eq. (47), and carrying out the 
details, we have 

hl(t) = 0.1714 e-^i'sin^^^ 

= 0.0857 e-""(l-cos 2)3/), 

hl(t)   = 0.1270 e-2' - (0.2540 cos pt 

+ 0.1950 sin ^Oe"'""*" 

+ (0.1009 + 0.0261 cos 2)3/ 

+ 0.0975 sin 2/306-"", 

iBm = f /JL (0 dt = 0.2048 -0.2070 e' 
Jo 

- 0.0052 e-'"^( - ai cos 2/37 

+ 2^ sm2l3T), 

aiT 

and 

£:«= \ hlit)dt =0.1413 + 0.0635(1-6-^0 
Jo 

+ ( - 0.2437 - 0.0246 cos 2)37 

+ 0.0039 sin 2j3r)e-"i^ 

+ (0.1270 cos PT 

- 0.0501 sin pT)e- '•^'•™^, (135) 

where 

ai = 0.4141,   and   /3 = 2.0107. 

Numerical results for both Em and En are shown in 
Fig. 14 and indicate clearly that E„<E,„ [12]. They 
are equal only when T -» oo. This reconfirms that 
the impulse response and transfer function with a 
minimum phase deduced from a given magnitude 
can be used as the worst case for analysis purpose, 
as far as the initial impact to the system under 
study by an external unwanted source is concerned. 
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10 
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Fig. 14. Energy contents of the sample system whose transfer 
functions are given in Eqs. (42) and (45). 
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For the practical example shown in Figs. 9 and 
10, we present the results on energy content in 
Fig. 15. Again, we have Em <Em,i = l,2,.. .,7. 
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Fig. 15. Energy contents of the helicopter whose approximate 
cw magnitude response is given in Fig. 10. 

7.   Conclusions 

We have used a simple method known in classi- 
cal network theory to determine the complete 
characteristics for an unknown linear system from 
a given cw magnitude response only. These char- 
acteristics include possible different transfer 
functions, their phases, and the corresponding 
impulse responses. Only one transfer function is 
minimum phase. The main achievement is to 
deduce an approximate squared-magnitude func- 
tion in the form of a ratio of two even polynomials 
based on the outstanding features in the given 
magnitude response, such as resonant frequencies 
and bandwidths. The remaining procedures for 
obtaining the complete system characteristics are 
exact. Four examples, three simulations and one 
using measured data, have been given to illustrate 
the proposed method. We have written software 
that greatly facilitates application of this technique. 
It first performs numerical calculations necessary 
to obtain the system transfer functions from the 
measured magnitude-frequency input data, and 
then gives impulse responses. We also have shown 
that the minimum-phase case, through its asso- 
ciated impulse response and energy content, 
constitutes the most pessimistic estimate as far as 
the initial threat to the system is concerned. 
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